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Abstract—Breast cancer therapy is particularly complex.
Case-based reasoning (CBR) is an approach that can support
clinicians when prescribing a therapy, and that is able to
explain its recommendation to the clinicians. In a previous
work, we proposed a visual CBR approach for helping clini-
cians to choose a treatment between four main categories (e.g.
surgery, chemotherapy). However, these are broad categories
and clinicians need more details about the treatment, e.g.
several surgeries exist such as lumpectomy. Here, we extend
our visual CBR approach for fully supporting the therapy for
breast cancer, using a hierarchical approach: first, decide the
category, then decide the exact treatment, etc.

Index Terms—breast cancer, case-based reasoning, explain-
able artificial intelligence, XAI.

I. INTRODUCTION

Breast cancer is one of the most common types of cancer
that affects women in Europe. It is associated with a high
survival rate at 10 years. However, the therapy of the disease
is incredibly complex. Many treatments exist, and they can
be grouped in four main categories: surgery, chemotherapy,
endocrine therapy and radiotherapy. Moreover, a wide range
of heterogeneous patient data has to be taken into account by
clinicians in the multidisciplinary Breast Units (BUs) when
prescribing the treatment, including basic patient character-
istics (age, sex), clinical characteristics (either global, per
breast or per tumor, since a given patient may have several
tumors, in the same breast or in the other one), imaging,
genetic markers, previous treatments,... [1].

Machine learning and deep learning recently achieved
many successes in diagnostic support [2]. Similar tech-
nologies have been applied to therapy, e.g. IBM Watson
was applied to breast cancer therapy [3]. However, these
approaches are “black box” that suffer from a huge lack of
explainability: while they may predict the best treatment,
they are unable to explain to a human user why their
prediction is the best treatment. This is particularly true for
neural networks. For medical imaging analysis, an annotated
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image, e.g. with the contours of the detected anomalies,
can make a decent explanation and is usually easy to
produce with deep learning. On the contrary, therapy is more
abstract by nature, and does not provide images to annotate.
However, clinicians need to understand the recommendation
of a decision support system. Recently, a review concluded
that machine learning is not yet ready for therapy [4]. On the
contrary, the recent field of explainable artificial intelligence
(XAI) aims at designing intelligent methods that can be
explained to a human [5].

The DESIREE European project (Decision Support and
Information Management System for Breast Cancer) aims
at supporting primary breast cancer therapeutical decision
and helping clinicians with the management of the patient
data and images. During the project, we develop a web-
based platform including several decision-support modules,
each of them using a different approach: clinical practice
guidelines implementation [6], machine learning, and case-
based reasoning (CBR) [7]; the current paper will focus on
the latter approach.

CBR solves a new case (e.g. a new patient) by retrieving
similar older cases with known solutions (e.g. treatments),
and adapting their solutions to the new case [8]. The new
case can then be retained with its solution for future reuse.
Contrary to machine learning approaches, CBR does not try
to learn a model (e.g. a rule set or a neural network) from the
case base. A well-known example is the k-nearest neighbors
algorithm (kNN). CBR can explain its recommendations by
using the older cases as examples.

In a recent journal paper [9], we proposed a visual, fully
explainable, CBR approach. It consists of retrieving similar
patients and then visualizing their treatments and their
similarities with the new patient. Our approach can support
the classification of a patient in 2-6 classes, corresponding to
treatments (e.g. surgery, chemotherapy, etc, corresponding to
Figure 1-1). However, these are broad treatment categories,
e.g. several types of surgery can be considered: lumpectomy,
mastectomy, quadrantectomy. Then, each surgery can have
several modalities, e.g. with or without axillary lymph node



dissection. While determining the broad category may help
clinicians, they also need support for choosing the exact
treatment and its modalities.

In this paper, our objective is to extend the visual CBR
approach to fully support the therapy for breast cancer, using
a hierarchical approach: first, decide the main category of
treatment (as previously done), then decide the exact treat-
ment and finally its modalities. Each step will be achieved
using the visual CBR interface.

II. METHODS

A. Visual CBR approach

Our visual CBR approach includes two parts (Figure 1-1).
On the right, a scatter plot displays quantitative similarities,
i.e. distances between patients. The central, white, dot repre-
sents the new patient, and the other, colored, dots represent
the similar patients. The color of these dots indicates the
type of treatment: red for surgery, green for chemotherapy,
blue for radiotherapy and yellow for endocrine therapy.
The smaller the distance between two dots is, the more
similar the two patients are. In Figure 1-1, we can see that
the majority of similar patients were treated by surgery,
but the most similar ones were treated by chemotherapy,
and no similar patients were treated by radiotherapy or
endocrine therapy. The scatter plot is a 2D projection of
a multidimensional space, and thus some information is lost
in the process. We draw it using MDS (Multi-Dimensional
Scaling) [10] in polar coordinates; it allows preserving the
distance involving the central dot (e.g. the new patient), to
the detriment of the other distances.

On the left, rainbow boxes display qualitative similarities.
Rainbow boxes are a technique we recently introduced
for set visualization [11]. This part of the visualization
retains only the two major treatment recommendations (here,
surgery and chemotherapy). Patients are shown in columns.
The central, white, column is for the new patient, and the
similar patients are placed on its left or its right, depending
on the treatment they received. The same color code as
on the scatter plot is used. Column width is proportional
to the similarity of an old patient with the new patient
(larger columns for more similar patients). Each colored box
represents an attribute-value pair shared between a group
of patients, for example “tumor size at mammography ≥
35.5”. The box covers the columns corresponding to the
patients having this attribute-value pair, e.g. here patient #0
(new patient), 2964, 2724, 2789 and 2966 have a tumor size
at mammography superior (or equal) to 35.5. A box may
have “holes” if the patients it covers are non contiguous;
patients are ordered so as to limit the number of holes with a
metaheuristic. The color of the box is the weighted mean of
the color of the columns it covers. It thus indicates towards
which recommendation it orientates: here, the green color
suggests that having a high tumor size at mammography
orientates towards chemotherapy. On the contrary, boxes that
do not include the new patient are gray and represent argu-
ments for not choosing a given recommendation. Finally,
the height of the box is proportional to Mutual Information

(MI), a statistical criterion indicating how the box attribute
is correlated with the treatment choice.

The interface is interactive: popup labels give more in-
formation and display the entire box labels for the smallest
boxes in which labels do not fit, and when the mouse is
over a patient in the scatter plot or the rainbow boxes, the
same patient is highlighted in the other part of the visualiza-
tion. This interface allows performing visually, at a glance,
several reasoning approaches: (1) Using the scatter plot,
one can perform visually a kNN or weighted kNN. Here,
surgery wins with kNN, but chemotherapy may win with
weighted kNN, because similar patients with chemotherapy
are closer to the new patient. (2) Using rainbow boxes, one
can determine the dominant color in boxes. Here, the green
or greenish colors of the boxes suggest that the new patient
share more qualitative similarities with old patients treated
by chemotherapy.

Finally, the clinicians are free to follow the visual recom-
mendations of the system, or to choose another treatment,
e.g. in figure 1-1, a clinician might consider that tumor size
at mammography is not a good criterion for determining the
treatment, and opt for surgery.

From a more technical point of view, the system relies
on the HL7 (Health Level 7) FHIR (Fast Healthcare Inter-
operability Resources) protocol for accessing patient data.
Similar older cases are stored and queried from a relational
database. The visual interface is generated by Python scripts
and use web standards (HTML, CSS, Javascript). All de-
pendency files (images, stylesheet, Javascript sources) were
directly embedded in the HTML page, to facilitate access in
secured environment (some hospitals do not allow Internet
access). For more details on this visual approach, please
refer to [9].

B. Hierarchical approach

The hierarchical approach we propose here consists of
dividing the choice of treatment in several intermediary
choices: the main category of treatment, the exact treat-
ment and its modalities (e.g. drug dosage). The CBR case
base can be modeled as a (p + 1)-dimensional database
X = {x1, x2, ..., xi, ...} with xi ∈ A1×...×Ak×...×Ap×Y
where Ak are the attribute dimension spaces and Y is the
solution space (i.e. the treatment), and the new case as
q ∈ A1×...×Ak×...×Ap. For the purpose of the hierarchical
approach, we consider that the possible treatments in Y are
organized hierarchically in a formal ontology (Figure 2),
with general categories (e.g. Breast Surgical Procedure) and
more specific treatments (e.g. Lumpectomy).

The first choice will consider broader categories, i.e. the
solution space is Y1 = {Surgery, Chemotherapy, Radio-
therapy, EndocrineTherapy}, and the similar cases X1 are
retrieved using common CBR technics such as the Euclidean
distance (we implemented it with JColibri). The two best
categories are compared using rainbow boxes, and two
buttons, one for each category, allows the user to choose a
category. When the user clicks one of the buttons, the CBR
process is repeated, producing a new visualization using the
same interface. The next choice will consider the subclasses



Figure 1. Example of hierarchical visual case-based reasoning.



Figure 2. Excerpt of the DESIREE ontology showing the treatment classes.

of the chosen solution y1 ∈ Y1 and the subset of similar
cases that are associated with the solution y1, and so on,
until the treatment is fully determined. Consequently, for the
i+1th step, the solution space is Yi+1 = {y′ : y′ v yi ∈ Yi},
where v represents the direct subsumption, and the similar
cases are Xi+1 = {x ∈ Xi : xp+1 v yi}, where xp+1 is the
solution associated with case x.

III. RESULTS AND DISCUSSION

Figure 1 shows 5 screenshots of the hierarchical CBR vi-
sual interface. Figure 1-1 shows the initial screen, comparing
the broad categories of treatments. Rainbow boxes retain
the two major categories. Two buttons at the bottom are
proposed to choose each category. When one of the buttons
is clicked, the interface is modified to display only the
similar cases associated with the chosen category. Colors are
automatically created for treatment, which are close to the
color associated with the treatment’s category (e.g. reddish
colors for surgeries). Figure 1-2A and 2B show the interface
after choosing surgery and chemotherapy, respectively. This
process can be applied recursively, e.g. for surgery, one can
select a precise surgery (e.g. lumpectomy) and compare the
various modalities.

The main difficulty raised by the hierarchical approach is
that the number of similar cases is reduced at each step:
in Figure 1, there are 22 similar cases at step 1, 13 at
step 2-A, 9 at step 2-B (of which only 4 are displayed in
rainbow boxes), and 5 at step 3-A and 3-B. Consequently, in
order to have still enough similar cases in the last steps, we
need to increase the number of similar cases retrieved at the
initial step. However, this may impact the performance of the
system: in most CBR systems, there is an optimal number
of similar cases to retrieve. Another possibility would be
to retrieve new cases at each step, e.g. to retrieve the 10
most similar patients at the step 1, and the 10 most similar

patients with surgery at step 2 (possibly including patients
not retrieved at step 1).

In the literature, visual approaches for CBR mostly
focused on 2D or 3D scatter plots [12], and thus were
limited to quantitative similarity: these approaches display
the amount of similarity between the new cases and the
old ones, but not on which attributes the similarity holds.
Another option proposed is parallel coordinates [13].

In conclusion, the proposed hierarchical visual CBR ap-
proach can support complex decision-making, such as breast
cancer therapy, by dividing the decision process into several,
simpler, decisions. The perspective of this work is the verifi-
cation of the system, possibly using a systematic approach in
combination with machine learning for extracting rules and
comparing them with guidelines, as we did previously on
another decision support system [14], its clinical validation
and its application in other domains.
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