iV2018 – Salerno

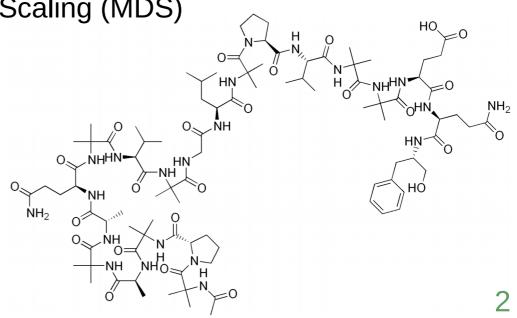
A new diagram for amino acids: User study comparing rainbow boxes to Venn/Euler diagram

Jean-Baptiste Lamy

jean-baptiste.lamy @ univ-paris13.fr

LIMICS Université Paris 13, Sorbonne Paris Cité, 93017 Bobigny Sorbonne Universités, Paris INSERM UMRS 1142

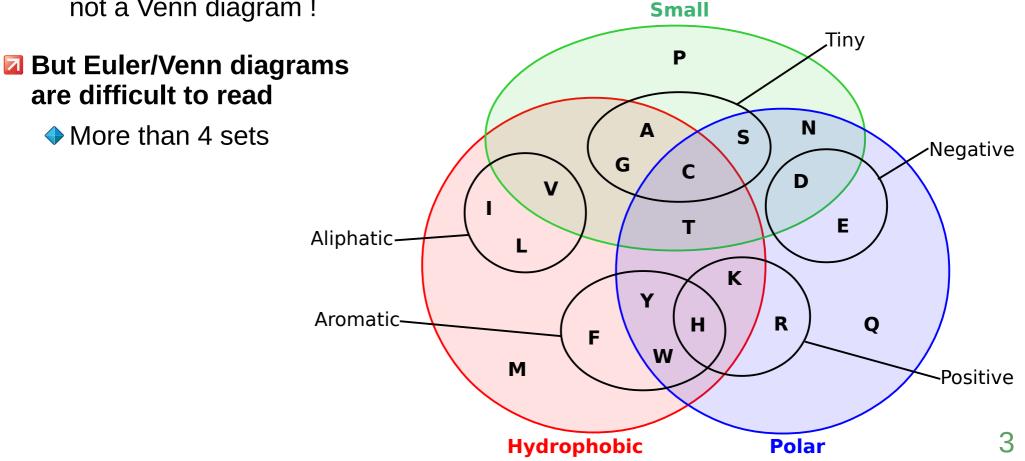
Introduction

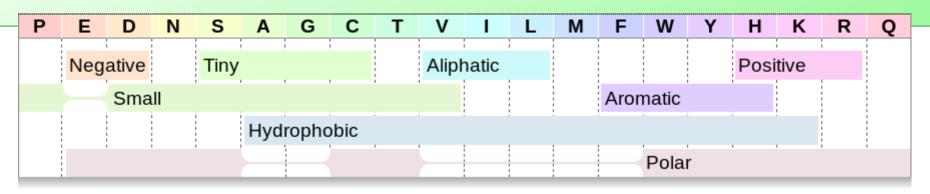

The 20 amino acids: the building blocks for proteins

Various groups of amino acids

- Size, Electrical charge, Chemical properties
- Taylor's classification in 8 overlapping groups

The 20 amino acids and the 8 groups are commonly visualized as an Euler diagram

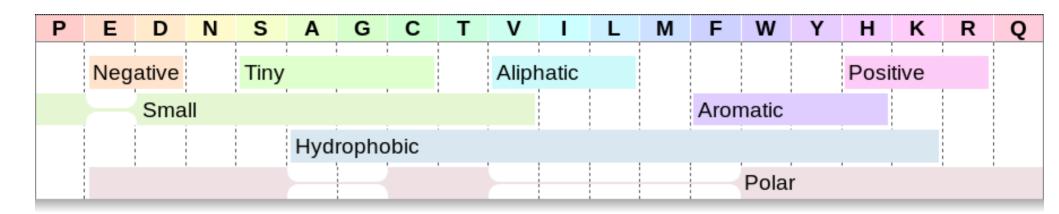

Produced via Multidimensional Scaling (MDS)


Introduction

The « Venn diagram of amino acid properties »

- Very well-known in biology and bioinformatics
- Google : 364,000 results for "Venn|Euler diagram amino acid"
- Actually an Euler diagram, not a Venn diagram !

Introduction

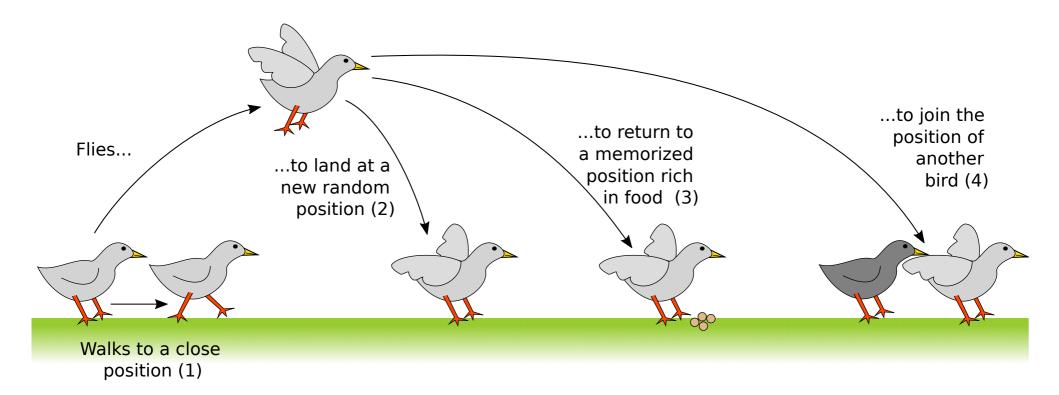

Rainbow boxes : a recent technique for set visualization

- elements => columns
- sets => rectangular boxes
- color => one color per element
- box color is the mean of its elements color
- non continguous element in a set => box hole
- elements are ordered so as to minimize the number of holes
- box are stacked vertically by size

Objectives:

- Evaluating rainbow box vs Euler diagram on amino acids
- Evaluating the possibility to enrich the diagram with new properties

Improving the Rainbow Boxes diagram



New column order: the 3 holes are in the same box Verify that no column order with less than 3 holes exists Better color contrast

Е	D	Ρ	Ν	S	Α	G	С	Т	V	Ι	L	М	F	W	Y	Н	К	R	Q
Nega	ative			Tiny		;			Alipł	natic	:					Posi	tive		
	Sma	.11	-	•									Aror	natic	•				
					Hyd	ropho	bic			i	i	i	i	1					
														Polar	r				

AFB metaheuristic

Artificial Feeding Birds (AFB) [Springer] Inspired by the behaviour of pigeons

- → Simple
- → Performant
- → Generic

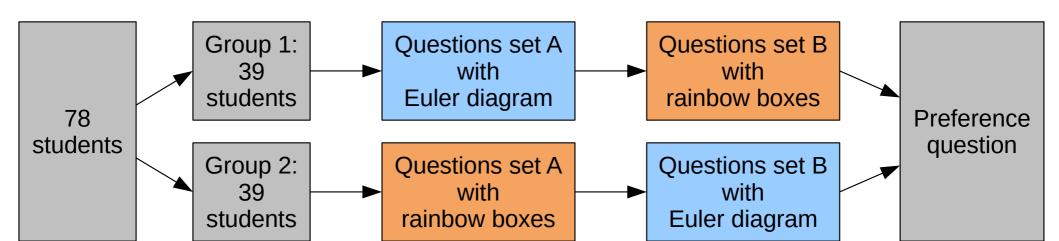
An optimisation problem = A triplet (coût(), vol(), marche())

Recruitment

78 biology students at University Paris 13

- ◆ 56 students in third year of bachelor degree (B3 / L3)
- ◆ 22 students in first year of master degree (M1)
- Majority of female students
- 5 sessions
- Single-blind
- B3 students were « naive »
 - New to the Euler diagram of amino acids

Protocol

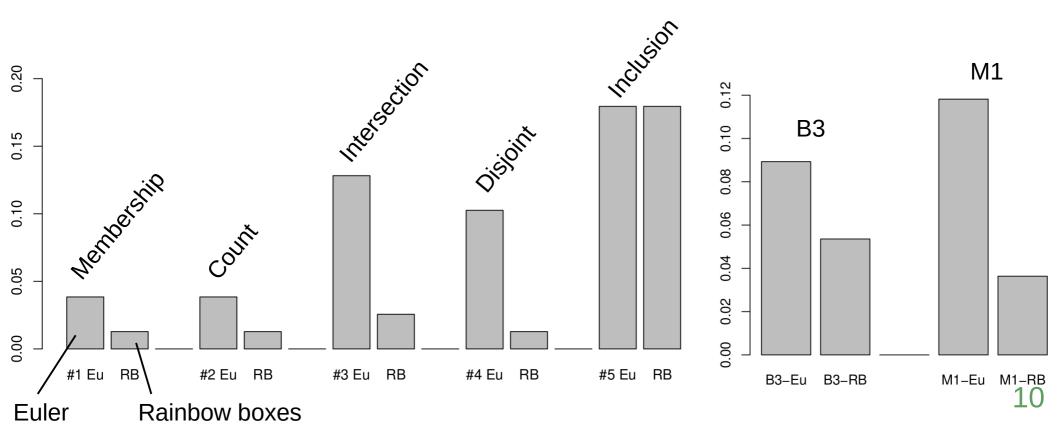

Cross-over protocol

- Each student tested both diagrams
- Two groups of 39 students each (28 B3 + 11 M1)
- Two sets of similar questions, A and B

🗖 Measurement

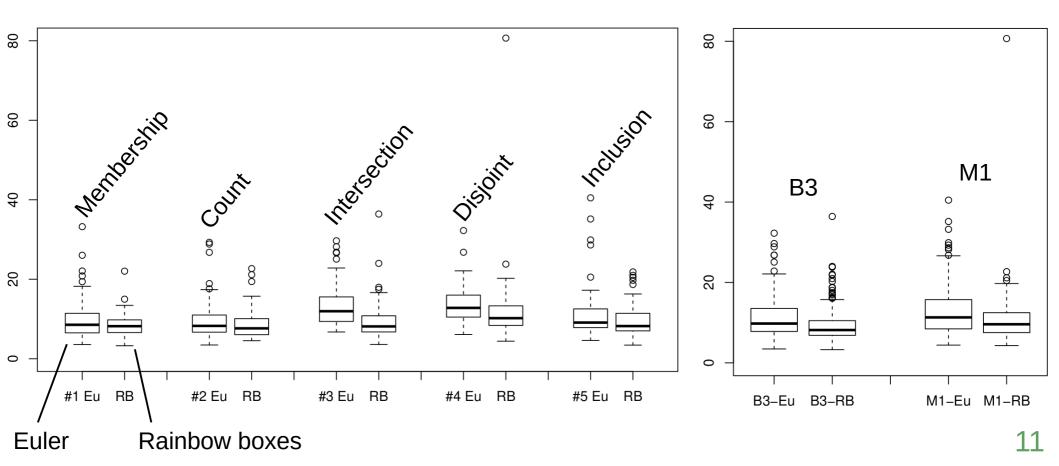
- Accuracy of responses (main criteria)
- Response times
- User preference (Euler diagram, rainbow boxes, no opinion)

Dynamic website


Questions

5 categories of questions

	#	Category	#	Question	Right answer
Set A		(Warm-up)	1	Click on the small and aliphatic amino acid	Valine (V)
	1	Membership	2	Is Valin (V) polar?	No
	2	Count	5	How many tiny amino acids are there?	4
	3	Intersection	6	Click on the aromatic and positive amino acid	Histidine (H)
	4	Disjoint	3	Click on the tiny and positive amino acid	None
	5	Inclusion	4	Are all small amino acids polar ?	No
Set B		(Warm-up)	1	Is Cysteine (C) small?	Yes
	1	Membership	2	Is Tyrosine (Y) hydrophobic?	Yes
	2	Count	5	How many positive amino acids are there?	3
	3	Intersection	3	Click on the small and negative amino acid	Aspartate (D)
	4	Disjoint	4	Click on the aromatic and aliphatic amino acid	None
	5	Inclusion	6	Are all aromatic amino acids hydrophobic ?	Yes


Evaluation results: error rates

- ◆ 38 errors with the Euler diagram (error rate 9.7%, 95% CI: 6.8-12.7)
- ◆ 19 errors with rainbow boxes (error rate 4.9%, 2.8-7.0).
- Significant difference, p value = 0.013 (Fisher exact test)
- Diagram and question category are the two significant factors (GLM)

Evaluation results: response times

- ◆ 11.57 seconds with Euler diagram (11.02-12.12)
- ♦ 9.63 seconds with rainbow boxes (9.10-10.16)
- Significant difference, p value < 10-6 (Welch 2 samples T test on log(time))</p>

Evaluation results: user preference

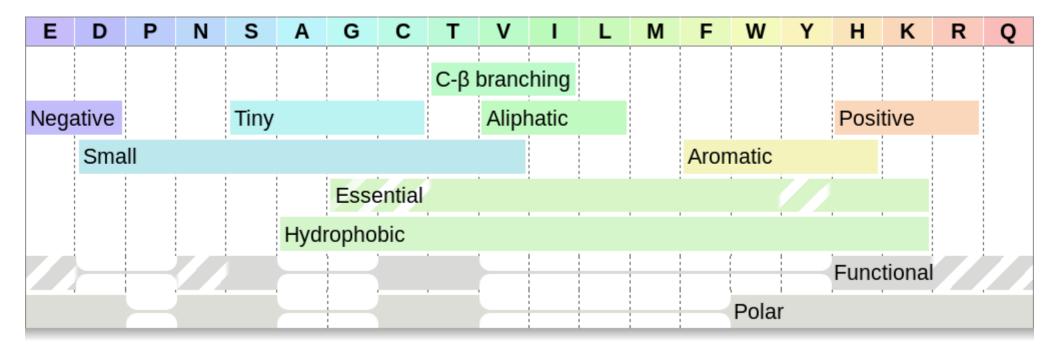
User preference

- 19 students preferred the Euler diagram
- ♦ 51 preferred rainbow boxes
- 8 indicated no opinion

User comments

- Students commented on their preference for rainbow boxes or (more rarely) for Euler diagram
- « Euler diagram is more complex at the beginning, but then "we
 deal with it" »
- Rainbow boxes were easier to read because the boxes were rectangular while the closed areas in the Euler diagram were rounded »

Enriching the diagram


3 new properties

Essential amino acids: not synthesized by Human cells

- $\mathbf{\Phi}$ **C-\beta branching**: have 2 non-hydrogen substituents attached to their C β carbon
- Functional: frequently involved in interaction with non-protein compounds

Hatches

Colors highlight similarities

Discussion

Rainbow boxes performed significantly better than Euler diagram, in terms of:

- Error rates (efficacy) -
- Response times (efficiency)

User preference (satisfaction)

3 components, possibly independent

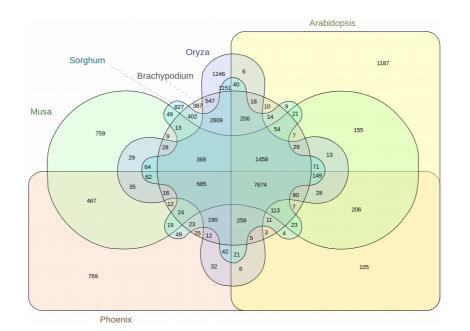
Rainbow boxes diagram can be enriched with new properties

Euler diagram is already too complex for enrichment

Rainbow boxes are easier to produce automatically

- Up to 100 elements and 250 sets
- Euler diagrams are chalenging above 6 sets
 - Up to 60 sets [Simonetto]

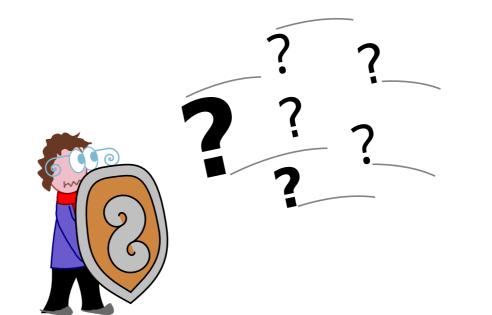
The new diagram could be used in textbooks and courses


In complement of, or instead of, the Euler diagram

Evaluation software => training software

Euler and Venn diagrams are commonly used in biology and medicine

- Comparison of gene/protein lists
- Proportional Venn diagrams showing disease repartition
- > Rainbow boxes might be an alternative


References

[iV2016] : Lamy JB, Berthelot H, Favre M. Rainbow boxes: a technique for visualizing overlapping sets and an application to the comparison of drugs properties. International Conference Information Visualisation (iV) 2016;:253-260

[JVLC] : Lamy JB, Berthelot H, Favre M, Ugon A, Duclos C, Venot A. Using visual analytics for presenting comparative information on new drugs. J Biomed Inform 2017;71:58-69

[Taylor] : Taylor WM. The classification of amino acid conservation. J Theor Biol 1986;119(2):205-218

[Simonetto] : Simonetto P, Auber D, Archambault D. Fully automatic visualisation of overlapping sets. Computer Graphics Forum 2009;28(3):967-974

